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A Robust Choice of the Lagrange
Multiplier in the SQP Newton Method *

Debora Cores' Richard A. Tapia?
September 1994

Abstract

We study the choice of the Lagrange multipliers in the successive
quadratic programming method (SQP) for equality constrained opti-
mization.

It is known that the augmented Lagrangian SQP-Newton method
depends on the penalty parameter only through the multiplier in the
Hessian matrix of the Lagrangian function. This effectively reduces
the augmented Lagrangian SQP-Newton method to the Lagrangian
SQP-Newton method where only the multiplier estimate depends on
the penalty parameter. In this work, we construct a multiplier es-
timate that depends strongly on the penalty parameter and derive
a choice for the penalty parameter that attempts to make the Hes-
sian matrix, restricted to the tangent space of the constraints, pos-
itive definite and well conditioned. We demonstrate that the SQP-
Newton method with this choice of Lagrange multipliers is locally and
g-quadratically convergent. Considerable numerical experimentation
is included and shows that our approach merits further investigation.
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1 Introduction

In this work we study the successive quadratic programming approach (SQP-
Newton method) to equality constrained nonlinear optimization. The SQP-
Newton method requires an approximation of the Lagrange multipliers and
the solution to an equality constrained quadratic programming problem at
each iteration. The objective function of this quadratic problem is a quadratic
approximation of the Lagrangian function (Lagrangian SQP-Newton method).
The solution of this quadratic problem may not be unique or may not exist if
the Hessian matrix of the Lagrangian function is not positive definite on the
tangent space of the constraints. Moreover, even when the solution of this
quadratic problem exists, it may not be reliable if the Hessian matrix is not
well conditioned. Several decades ago it became fashionable, promoted by
the work of Hestenes in 1969, to work with the augmented Lagrangian instead
of the Lagrangian. Many researchers considered the augmented Lagrangian
SQP-Newton method instead of the Lagrangian SQP-Newton method. The
objective function of the quadratic problem in the augmented Lagrangian
SQP-Newton method is a quadratic approximation of the augmented La-
grangian function. Clearly, in this case, we not only require an approxi-
mation to the Lagrange multipliers but a value for the penalty parameter.
However, the choice of the penalty parameter turned out to be an extremely
delicate issue since the augmented Lagrangian SQP-Newton method is quite
sensitive to this choice. Little success, if any, was obtained in this direction
and researchers eventually abandoned the use of the augmented Lagrangian
and returned to the standard Lagrangian (choice of zero for the penalty pa-
rameter).

It is known that the augmented Lagrangian SQP-Newton method depends
on the penalty parameter only through the multiplier in the Hessian matrix of
the Lagrangian function. This effectively reduces the augmented Lagrangian
SQP-Newton method to the Lagrangian SQP-Newton method where only



the multiplier estimate depends on the penalty parameter. The objective of
the current work is to derive a choice for the penalty parameter so that the
Hessian matrix, restricted to the tangent space of the constraints, is positive
definite and well conditioned. Moreover, we desire that this choice of the
penalty parameter does not destroy the local and g-quadratic convergence
of the Lagrangian SQP-Newton method. This work has similarities to Tapia
[9] where he used the penalty parameter to obtain effective BFGS and DFP
secant updates for equality constrained optimization in the SQP framework.

This paper is organized as follows. In Section 2 we give background ma-
terial on the augmented Lagrangian SQP method for equality constrained
optimization and motivate our philosophical approach for picking the penalty
parameter. We begin Section 3 by posing an ideal constrained optimization
problem whose solution gives the desired penalty parameter. The constraint
consists of an inequality involving the Byrd and Nocedal measure function.
Next, with an eye towards computation, we observe that the Byrd-Nocedal
function serves effectively as a barrier function and replace our ideal problem
with an equivalent logarithmic barrier function problem. In Section 4 this
barrier function problem is studied closely for the special case of equality
constrained optimization with only one constraint. From this analysis we
conclude that solving the barrier function problem would not be numerically
efficient. Hence, we replace the barrier function problem with a problem
that preserves some of the flavor, but whose solution can be readily ob-
tained. The procedure for obtaining the penalty parameter for the special
case of one constraint is extended to many constraints in Section 5. Our idea
is to use, as the basis of our extension, the one-constraint approach developed
in Section 4. We do this in two distinct ways; the first we call the parallel
approach and the second we call the sequential approach. In Section 6 we
establish the local and q-quadratic convergence of the SQP-Newton method
with this new choice of Lagrange multipliers. Finally, in Section 7 we present
numerical results using our new choice of Lagrange multipliers in the SQP-
Newton method. The numerical results obtained by using this new approach
for computing the Lagrange multipliers are encouraging. It was possible
to achieve convergence in many examples, where the SQP-Newton method
with well-known choices for the Lagrange multipliers (the least-squares mul-
tiplier estimate [4], the Miele-Cragg-Levy multiplier [6], and the multiplier
associated with the solution of the quadratic program (see Tapia [10] )) did
not produce iteration sequences which converged. A significant part of this

3



work is the study of the effectiveness and the robustness of this new choice
of Lagrange multiplier estimate in the SQP-Newton framework. Hence, in
our numerical comparisons we did not embed the SQP-Newton method in
a globalization strategy. Our reason for not doing this is that we feel that
good global behavior of the local method speaks strongly to the effectiveness
of our multiplier choice.

2 Preliminaries

In this work, we are concerned with the nonlinear equality constrained opti-
mization problem:

minimize f(z) (1)
subjectto h(z) =0

where f: IR - IR and & : R® — IR™ are assumed to be smooth nonlinear
functions and m < n. The Lagrangian function associated with problem (1)

18

Yz,)) = f(z) + h(z)T);  and (2)

the augmented Lagrangian function associated with problem (1) is
L(z, )\ c) = f(z) + h(z)TA + %h(az)Th(a:). (3)

In the above A = (A1, Az, ..., An)7 is called the Lagrange multiplier and the
parameter ¢ € IR, ¢ > 0 is called the penalty parameter.

Throughout this work we will assume that problem (1) has a solution
z, with associated Lagrange multiplier A\, and we also assume the standard
assumptions for the analysis of Newton’s method:

(A1) f,h; € C*(D), where D is an open convex neighborhood of the local
solution z, of problem (1), and V2 f and V2h; are Lipschitz continuous
at z..

(A2) Vh(z.) has full rank.
(A3) 2TV2{(z.,)\.)z > 0 for all z # 0 satisfying Vh(z.)Tz = 0.



Consider the augmented Lagrangian SQP-Newton method. For a given
iterate (zx, Ax) and penalty parameter c; we let

Tk = T+ Azy
A1 = M+ AN (4)

where Azy is the solution, and AMAy is the multiplier associated with the
solution, of the quadratic program

minimize ¢(Az) = VL(zk, M, ck)TAz + %AzTV§L(zk, Ak, ck)Az (5)
subject to  Vh(zi)TAz + h(zi) = 0.

The second-order sufficiency conditions for problem (5) are the associated
first order necessary conditions and

sTV2L(xk, Ak, cx)s >0 forall s#0 such that (6)

Vh(zr)Ts = 0. (M

Clearly, if V2L(zg, A, cx) does not satisfy these sufficiency conditions, then
problem (5) may not have a solution; however, even if V2 L(zy, Ak, ¢i) satisfies
these conditions, the solution may not be reliable.

Consider the augmented Lagrangian SQP-Newton method. The first-
order necessary conditions associated with the quadratic program (5) are

( VﬁL(me ’:\(sz)kT) Vh(()-’tk) ) ( ﬁix ) _ ( —vxi(hz(,;:)k,ck) ) )

It is not difficult to see that (8) reduces to

( V24(zx, M + gc:((::))} Vhéa:k) ) ( ﬁiﬁi ) _ ( —v_,i((z,:)xk) ) ©

From equation (8) and the equivalence between (8) and (9) we observe that:



e The augmented Lagrangian SQP iterate zi4+1 depends on the penalty
constant ¢ only through the multiplier estimate in the Hessian matrix

Vﬁl(mk, Ar + ckh(:ck)).

Hence, we consider using, as a Lagrange multiplier estimate in the Hessian
matrix of the Lagrangian function, a quantity of the form

Xe = U(zx, M) + Crh(zi) (10)

where ¢, € IR™, C, = diag(ck), and U(zk,As) is a Lagrange multiplier
formula which does not depend on c;. Ideally we propose to choose the
penalty parameter in (10) so that:

(C1) the Hessian matrix of the Lagrangian functional V2{(zy, ;) is positive
definite on the subspace {s € R" : Vh(zx)Ts = 0}.

(C2) the Hessian matrix V2{(zy, A;), restricted to the tangent space of the
constraints, is well conditioned.

(C3) thelocal convergence properties of the Lagrangian SQP-Newton method
are maintained.

We hope that as a by-product we will obtain improved global behavior
of the augmented Lagrangian SQP-Newton method. It is worth mentioning
that none of the Lagrange multiplier formulas in the literature guarantee that

conditions (C1), (C2) and (C3) are satisfied.

3 A Robust Choice of The Lagrange Multi-
pliers

Consider (zx, A¢) the k** iterate of the Lagrangian SQP-Newton method for
problem (1). Let U(x,A) be a Lagrange multiplier formula, i.e.,
A = U(z, As) when (z., ) is a stationary point of problem (1). Also,
let B(zx) be a matrix whose columns form an orthonormal basis for the null
space of VA(z)T. For c € R™ and p € IR we let

H(c) := B(zx)"V24(zs, U(zk, \t) + Ch(zy))B(z+) (11)



and

H(c,p) := H(c)+ pI (12)

As before, C denotes the diagonal matrix diag(c).

The task at hand is to determine cx € IR™ so that the objectives (C1)-
(C3) of Section 2 hold with X; given by (10). Hence, we look for ¢; such that
H(cx) is positive definite and well conditioned. However, in general we will
not be able to attain this goal, so we incorporate a standard regularization
procedure and ask for ¢; and pi such that H(cx, px) is positive definite and
well conditioned. We then calculate our correction (Az, A)) to (zx, Ax) as
the solution of the linear system

( DVkl(z?;Sl;’) Vh(()a?k) ) ( ZAS\ ) _ ( _VZZ(iI;;(ZI(c:;:k,/\k)) ) 13)

with Dk(ck,pk) = V:Z(mk, U(:Ek, /\k) + Ckh(.’l:k)) + pi1.

The above considerations let us to an ideal optimization problem of the

form o
minimize f(c, p) = ||((Ch(zx))T, p)II3 (14)
subjectto H(c,p) € S

where S is an appropriate set contained in the set of symmetric and positive
definite matrices (SPD). We now make an observation that will facilitate
our presentation. Clearly, if a particular component of the constraint vector
h(zi) is zero, then the corresponding component of the penalty parameter
ci does not enter into the multiplier estimate (10); and hence does not enter
into Dy in (13) or problem (14). For this reason we will always choose this
component of ¢ to be zero. Therefore, problem (14) will be only to select
components of the penalty parameter corresponding to nonzero components
of h(zx). Hence, without any loss of generalization in the analysis of problems
of the form (14) we will assume that the vector h(zx) has no zero components.

In problem (14) we expect to define the set S in terms of the properties
of the eigenvalues of H(c, p). Hence it is most satisfying that the eigenvalues
of H(c, p) are invariant with respect to the choice of the matrix B(zx) used
in defining the regularized reduced Hessian H(c, p). This fact is the topic of
the following theorem.



Theorem 3.1 Let A € RR™™ be a symmetric matriz. Let By, and
B, € R™F) with n > k be such that each has orthonormal columns and

these two sets of columns each form a basis for the subspace V C IR™. Then
BT AB, and Bf AB, have the same eigenvalues.

Proof. It is clear that Bf AB, and BT AB; are symmetric matrices.
Thus, the matrices Bf AB, and BT AB,; have k real eigenvalues and the
corresponding eigenvectors form an orthonormal set. Suppose A; € IR is any

eigenvalue of the matrix B AB, with corresponding eigenvector z; € IRF.
Then,
Bg'Ang.- = \T;.

It is straightforward to see that there exists an orthogonal matrix @ € IR(Fx¥)
such that
B; = B;Q.
Therefore,
QQTBITABle,' = )\;ng.

Since QQT = Iy« we have that Bf AB,(Qz;) = X\iQz; which implies, }; is
an eigenvalue of the matrix BY AB, with corresponding eigenvector Qz; and
establishes the theorem. o

Recently, Byrd and Nocedal [1] introduced a measure function which has

the flavor of the condition of a matrix A € SPD. This function was also
studied by Fletcher [3]. It is defined as:

¥pn(A) = %(trace(A) —In(det(A))), for A € SPD. (15)

The Byrd-Nocedal measure function (15) satisfies the following properties:

(P1) Upn(A) is a continuous and strictly convex function on the set SPD
(see [1] and [3]).

(P2) ¥pgn(A) is globally and uniquely minimized by A = I over the set SPD
(see [3]).

(P3) Upn(A)>1, for any A € SPD (see [1]).

(P4) ¥pn(A) > In(Cond(A)), for any A € SPD

where Cond(A) denotes the 2-norm condition number of the matrix A.

(see [1)).



In some sense, Ypn(A) can be considered to be a measure of the closeness
between A and the identity matrix.

Our ideal problem, whose solution gives (cx, pi), to be used in Dy (ck, pi)
in the linear system (13) is

minimize f(c, p) = ||((Ch(z+))T, p)lI3
subject to H(c,p) € SPD (16)
Upn(H(c,p)) < M

for some choice of M > 1.
Theorem 3.2 Problem (16) has a unique solution.

Proof. Clearly f is continuous. Moreover, since we are assuming that no
components of h(zy) are zero, f is also uniformly convex. Furthermore, the
constraint set is nonempty, closed and convex. This proves the theorem.

a

The remainder of this work is concerned with finding a numerical ap-
proach for solving problem (16). Towards this end, we replace problem (16)
with the barrier penalty function problem

minimize (c,0) = I(Ch(@))T, )3 + WEsN(H(ep) (19
subject to H(c,p) € SPD

for some choice of u > 0.
Theorem 3.3
(1) Problem (17) has a unique solution.

(ii) If (c¢*(p), p*(1)) solves problem (17), then (c*(i), p*(p)) solves problem

(16) with
M = Usn(H(( (1), p"(1))).

Proof. In order to prove (i), consider any (¢, p) such that H(¢, p) € SPD.
Let S = {(c,p) € R™? : H(c,p) € SPD and f,(c,p) < fu(ép)}. Now,
consider the optimization problem:

minimize fu(c,p) = |((Ch(zx))"; I3 + u¥BN(H(c, p))

subjectto (c,p) €S (18)



By the continuity, convexity of f, and the fact that the set S is closed
we have that 3 is closed and convex. On the other hand, S is also bounded
since f, has the infinity property on SPD, i.e., f goes to infinity when the
norm of of the vector (c, p) goes to infinity, for all matrices H(c, p) in SPD.
Moreover, f, is a strictly convex function on S. Thus the optimization
problem (18) has a unique solution. Finally, since S is contained in SPD
and f, is strictly convex on SPD we have that the optimization problem

(17) has also a unique solution. The proof of part (ii) is straightforward.
a

4 The One Constraint Case (m = 1)

In this section, we consider problem (1) with only one constraint since it is of
theoretical importance for the case of more constraints. For this particular
case, we construct a constrained optimization problem, that will be solved
at each iteration of the SQP-Newton method, to obtain an approximation to
the solution of the barrier penalty problem (17), with p = 0. The reason
for considering px = 0 is that in this way the structure of the SQP-Newton
method is preserved (see systems (8) and (13)). Moreover, we always obtain
better results by first setting pr = 0 and attempting to find ¢; which satisfies
our criterion.

Suppose we are at the k* iteration of the SQP-Newton method. Consider
the reduced Hessian matrix H(c) for the one constraint case, i.e.,

H(Q) = Bla)'Vil(or, Ulzs) + ch(er)) Blo)
= B(z)"(V2f(zx) + U(2x)Vh(2x)) B(2x)
+ ch(mk)B(:z:k)TVQh(xk)B(a:k). (19)

We have that all the elements in (19) are known except the value of the
penalty parameter c; so for the sake of simplicity, we can write (19) as

H(c)=A+ chiD
where, ‘

hk = h(:z:k),
A = B(ex)"(V’f(zs) + U(zx)Vh(2x)) B(zs) and,
D = B(z:)TV?h(z1)B(z4).

10



First, we characterize the set of minimizers of the Byrd and Nocedal measure
function (15) over the set SPD.

Theorem 4.1 Consider the optimization problem

minimize Upn(A + chiD)
H(c) € SPD

If hy # 0, then the solution ci of (20) satisfies

(20)

trace(H(cx)™D — D) = 0.

Proof.  Let us differentiate the function ¥gn(H(c)) with respect to the
penalty parameter c

%(\IIBN(H(C))) - n—i—l {hktra,ce(D) - % (ln(det(H(c))))} L@

On the other hand, by Lemma 1.4 of Fletcher [3] we have that

h"l {trace(H(c)*D - D)}. (22)

n_

d
2 (Yen(H(c))) =

If ¢ is a solution of problem (20) and ki # 0 we have that c; satisfies the
first-order necessary conditions, that is:

trace(H(cx)™'D — D) = 0. ] (23)

From the above result we observe that if there exists ¢ such that H(cx) = I,
then equation (23) is satisfied and this ¢ is the unique minimizer of problem
(20). However, this is not always possible, nor desirable, and it is not trivial
to obtain an expression for ¢; from the first-order necessary condition (23).
Therefore, we consider substituting H(ci) for H(ck)™! in (23) to obtain

trace(H(ck)D — D) = 0. (24)
Now, consider the following equation

ckhi + ptrace(H(cx)D — D) = 0. (25)

11



The first term on the left-hand side of (25) corresponds to the first-order
necessary conditions for the minimization of ||cxhi||2 and we are assuming
hi # 0. Our next result shows that there exits a relationship between equa-
tion (25) and the following optimization problem:

minimize $(c) = llchilld + wlH(c) - I|[%
ceR

Theorem 4.2 A necessary and sufficient condition for ¢ to be a minimizer
of problem (26) is that ci satisfy equation (25).

Proof.  Observe that ¢'(c;) = 0 is equivalent to
2cxh? + 2uhitrace(H(cx)D — D) = 0.
If hr # 0, and trace(D?) # 0 then this necessary condition becomes
crhi + ptrace(H(cx)D — D) = 0. (27)

On the other hand, we know that the function ¢ is uniformly convex on IR.
Hence, equation (27) is a necessary and sufficient condition for ¢; to be a
minimizer of problem (26). o

Theorem 4.2, Theorem 4.1, and the fact that the minimizer of the Byrd
and Nocedal measure function (15) over the set SPD is the identity matrix,
motivate us to replace the barrier penalty function f, given in problem (17)
with the following function:

8(c) = llchi|lz + ullH(c) — I||%, (> 0). (28)

It is clear, that for the minimizer ¢; of ¢ we can not guarantee that the
matrix H(cy) is positive definite. For this reason, we need to restrict the min-
imization of ¢ to a set contained in SPD. Tarazaga in [11] and [12] presented
a sufficiency condition for a matrix A € IR®*" to be positive definite. This
condition does not require us to know the eigenvalues of the matrix A and
it is an easy condition to evaluate. We state this condition as the following
theorem (see [12]).

Theorem 4.3 (Tarazaga)
Let A e R™". If

T(A) = trace(A) ~ (n — 1)%||A||r > 0, (29)
then A is positive definite.

(26)

12



In our current application H(c) is an (n — 1) x (n — 1) matrix. Observe
that if I is the (n — 1) x (n — 1) identity matrix, then for n >0

() =n ((n = 1)~ /n — y(n - 2)). (30)

Let

Q= {c €R:T(H() > (n—1) —/(n— 1)y/{n - 2)} . (3

The constrainted optimization problem that we propose to solve at each
iteration of the SQP-Newton method to obtain the penalty parameter ¢ is

minimize ¢(c) = ||che|l3 + pllH(c) — I|%

subject to c€ . (32)

Clearly, by the Tarazaga condition (29) any matrix in §2, the constraint set of
problem (32), is symmetric and positive definite; however ! may be empty.
An obvious way to enlarge (0 is to use T'(n!) for € (0,1) instead of T'(I) in
the definition of 2 given by (31). In the current study we did not investigate
this option; it probably merits further investigation.

Theorem 4.4 If Q # 0, then the optimization problem (32) has a unique
solution.

Proof. The proof follows from the fact that €2 is closed and convex and
#(c) is continuous and uniformly convex. O

4.1 Algorithm for the Penalty Parameter

Recall that §2 is given by (31). The algorithm we propose for obtaining (c, p)
at the k' iteration of the SQP-Newton method, is as follows

Algorithm 4.5

Given g > 0 do the following:

If H(0) € Q
Set (ck,pk) = (0,0)

Else
Let ¢ be the solution of the constrained problem (32), if it exists.
Otherwise, let ¢ be the solution of the unconstrained problem (26).

13



If H(c;) € Q
Take (cx, px) = (¢}, 0)
Else
Take (ck, px) = (0, px) where pj is computed such that
H(0) + p«I € SPD
End
End

Notice that in Algorithm 4.5 we compute p; only if H(0) ¢ 2 and
H(c;) € Q. Moreover, in this case we take ¢; = 0 and add pxl to the
reduced Hessian matrix H(0). This reasoning comes from the fact that ¢
obtained in the first steps of the algorithm is not a satisfactory choice for the
penalty parameter. Thus, in this case it makes better sense to correct the
matrix H(0) instead of the matrix H(ck). In order to compute px we use the
modified Cholesky factorization as presented in Dennis and Schnabel [2].

5 An Explicit Expression for the Penalty Pa-
rameter
In this section we use Lagrange multiplier theory to find an explicit solution

of problem (32) for the case m = 1.
The system of first-order necessary conditions for problem (32) is

Ve l(ck,7) = 2ckhi + p(2hitraceAD)
+2cih2trace(D?) — 2hitrace(D))

—~ < hitrace(D) — (n — )W (cs) }
”{ RPN e o
= 0 (33)
T(H(ct)) = T(I) (34)
YT (H(ex)) -T(I)) = 0 (35)
vy 20 (36)

where,

W (c) = 2hitrace(AD) + 2chitrace(D?) and,

14



R(c) = \/tra,ce(A2) + 2chytrace(AD) + (c)2hitrace(D?).

The first-order necessary conditions will be satisfied if one of the following

cases occurs
Case 1:
If ¥ = 0, then (35) and (36) are satisfied and thus,

_ pftrace(D) — trace(AD)}
k= hi + phitrace(D?)

(37)

is a solution of the system of first-order necessary conditions ((33), (34), (35)
and (36)) if T'(H(cx)) = T(1)

Case 2:

If ¥ > 0, then by the complementarity equation (35) we have that any ci
satisfying

T(H(cx)) = T(I)
-

0  and such that, (38)
0 (39)

v

is a solution of the system of first order necessary conditions for problem (32)
where,

Y= {2cih? + p{2hitrace(AD) + 2cxhitrace(D?) — 2hitrace(D)}} 2R(ck) .
2R(ci) hytrace(D) — y/(n —2) W(ck)

Our next result characterize the solutions of the equation (38).
Lemma 5.1 Let
T(H(c)) = (trace(A) + chitrace(D) — T(I))* — (n — 2)R(c)®.
Then,
{ce R:T(H(c)) - T(I) =0} C {ce R: T(H(c)) = 0}.

Proof. Let us write

(T(H(c)) = TU))(T(H(c)) + T(I))

T(H(c)) -T(I) = T(H(c)) + T(I)

(40)

15



If ¢ satisfies T'(H(c)) — T'(I) = 0 then,

P(H(0) = (T(H(9) - TI)T(H)+TI)=0 and,
T(H(c))+T(I) # 0. O (41)

From the above result we have that any zero of the polynomial of degree
two, T'(H(c)), that satisfies equation (41), is a zero of equation (38).

6 The m > 1 Constraint Case

In this section we extend Algorithm 4.5 to the case where the number of
constraints m is greater than one. We present two distinct algorithms for de-
termining a penalty vector ¢ in the Lagrange multiplier formula (10) keeping
objectives (C1), (C2) and (C3) in mind.

In order to introduce the first algorithm we write the expression of the
reduced Hessian matrix of the Lagrangian function H(c) when the multiplier
is given by (10) as:

H(c) =A+ i U;D' + ic;th‘, (42)
=1 =1
where,
hi = hi(zi)
i = Uilaw)
A = B(zx)"Vif(zx)B(zx)

Di = B(mk)TV;‘;h.(:vk)B(:ck)
On the other hand, we can write (42) in the following way,
1
H(C) = ;{Hl(cl) + Hg(Cg) + ...+ Hm(Cm)} (43)

where,

Ai=A+mUD' and Hi(c)=Ai+ meh;D'  for i=1,...,m.
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Let us define the set € for the case m > 1 as

N={ceR™:T(H(c)) 2 T()}, (44)
and we also definefor : = 1,...,m

O ={ceR™:T(Hic)) >T(I)}, (45)

where T was defined in Section 4 by (29). Now, we can state an extension of
Algorithm 4.5, for computing the vector (¢, px), when m > 1.

Algorithm 6.1 (Parallel)
Given g > 0 do the following:
If H0) € Q
Set (ck,pk) = (0,0)
Else
For i = 1,...m solve the following constrained problems for ¢;
(Consthi=  mingi(c:) = llchalld + wl () — T1I3
c €5
If H,(C,) € Q;
Set ¢f = ¢
Else
Let ¢! be the solution of unconstrained problem
(Unconst); = min ¢i(ci) = ||cshill} + pll Hi(e:) — 1|7

End

End

Set c¢*= (fn;-, 5";;, ,9}:‘:)

If H(c*) € Q
Set (ck, pi) = (c*,0)

Else
Set (ck, px) = (0, px) where p; is computed such that
H(0) + pxI € SPD

End

End

Notice that Algorithm 6.1 is actually a parallel version of Algorithm 4.5,
given in Section 4, since it is possible to solve each problem (Const); for
t = 1,..m independently.
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In order to state another version of Algorithm 4.5 we write the reduced
Hessian matrix of the Lagrangian function, at iteration k, of the SQP-Newton

method as:

1 1 1 L ;
H(c) = Ao+(EA+;A+...+;A)+ZU,§D’+ZC.'heD'

=2 =1

1 i ;
i=m-1

Am—l + thmDm

where,
1
Ao = EA+U,:D1

1 . . . .
A; = EA + A+ UMD D i=1,...,m—1

Let us denote, for : = 1,...,m

Hi(c) = AiitchiD' and
% = {ceR™:T(H(9) 2 =T(D)},

where T is given by (29).

(46)

(47)
(48)

We will use the expression (46) for H(c;) and the notation (44), (47) and

(48) to state another extension of Algorithm 4.5 when m > 1.

Algorithm 6.2 (Sequential)
For a given value of the constant g > 0 do the following:
If H0) € Q
Set (ck, px) = (0,0)
Else

For ¢ = 1, ...m solve the constrained problems for c;

(Const) = mingi(c) = lleshilly + ull Hile:) - 5 1IF

¢ €

18



If H,(C,) €

Set ¢f =¢;
Else
Let ¢} be the solution of unconstrained problem
(Unconst); = min gi(c:) = leshill} + pll Hi(e:) — 117
End
Set A; = #A + A1+ C’:h;Di
End
Set ¢ =(cf,¢3,.5C0)
If H(c*) € Q
Set (ck, pi) = (c*,0)
Else

Set (ck, px) = (0, px) where p; is computed such that
H(0)+ pI € SPD
End
End

Algorithm 6.2 is a sequential version of Algorithm 4.5, since the solution
of problem (Const);4; depends on the solution of problem (Const); for ¢ =
1,..,m—1.

7 Local and q-Quadratic Convergence

In this section we study the local convergence properties of the SQP-Newton
method with the Lagrange multiplier estimate given by formula (10). We
present our convergence analysis in terms of a generic choice for the penalty
parameter c in formula (10). Towards this end let us begin with the following
definition.

Definition  Let z. be a stationary point of problem (1) and consider the
penalty choice function ¢ : R®™ — IR™. We say that c is locally bounded at z.
if there ezists N(z.), a neighborhood of z., such that c¢(N(x.)) is a bounded
subset of R™

In addition to the standard Newton’s method assumptions (A1)-(A3), our
convergence theory will require the boundedness assumption:
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(A4) The penalty choice function c is locally bounded at z,.

We demonstrate local convergence and quadratic convergence for the
SQP-Newton method using the Lagrange multiplier choice (10) under the
standard assumptions (A1)-(A3) and the boundedness assumption (A4).

First, we present a useful general perturbation lemma that resembles
Lemma 11.2.2. in Ortega and Rheinboldt [7]. However, our result is more
general in the sense that we consider perturbations to both the Jacobian
matrix and the right-hand side in the Newton linear system. To begin with
consider the nonlinear system

F(z) =0, (49)

where F : IR* — IR". We will use the notation J(z) = F'(z). Now, consider
Newton’s method applied to (49)

Ty =z — J(z) ' F(z), (50)
and a perturbation of this method, say
2y =z — (J(2) + J(2) 7 (F(=) + £(x)), (51)

where J : R* > IR™" and F' : R® —» IR". The standard assumptions for
Newton’s method applied to system (49) are:

(S1) There exists . such that F(z,) = 0.

(S2) The function F is continuously differentiable in an open convex set D
containing z,, and the Jacobian operator J is Lipschitz continuous in

D.

(S3) The Jacobian matrix J(z.) is nonsingular.

Lemma 7.1 (Perturbation Lemma)
Assume the standard assumptions (S1)-(S3). Assume further that in a neigh-
borhood D C D of the local solution z,

@) (@)l = O(llz — .]),
(ii) |F()) = O(llz — 2.).
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Then, the iterative procedure (51) is locally and q-quadratically convergent to
Ty

Proof.  From assumption (i) and Theorem 3.6 of Stewart [8] we have
24—y = 2~ 2.~ (J7H(2) + W(2)J 7 (2))(F(2) + £())

where
|92 (z)J (@)l
1-|lJ-Y(=)J ()|’

for all z in a neighborhood of z.. Hence,
o — 2.l < 7 (2)(F(=s) = F(z) = J(2))(2s — o)

+IT T @IE@ + W @I @NIF () = F(e.)ll
+HIW @I @IF @) (52)

W (=)l <

By the standard assumptions (51)-(S3) and assumption (i) we have that there
exists a neighborhood of z., such that for all  in this neighborhood

W (@)l = O(ll= — a.|). (33)

Moreover, from (52), (53) and assumptions (i), (ii) we have that for all z in
a neighborhood of z,

24+ — 2]l = O(llz — z.|I*). (54)

It follows from (54) that the iterative procedure (51) is locally and quadrat-
ically convergent to z.. O

In order to utilize the perturbation lemma we consider Newton’s method
on the nonlinear system of equations

V.L(z, M\, p) = 0, (55)

where ), is the multiplier associated with the solution z, of problem (1)
and j is a positive constant such that the matrix VZL(z., A\, p) is positive
definite. It is well known that such constants exist under the assumptions

(A1)-(A3). Hence, our ideal algorithm will be
T4 =z — ViL(z, )\, p) 'V L(z, A, §). (56)
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Recall that the iterative procedure (56) is locally and q-quadratically con-
vergent to z..

The SQP-Newton method with our choice of the Lagrange multiplier
formula (10) can be written

z, = z— R(@)"YVf(z)+ Vh(z)A(z)(h(z) — Vh(z)TR(z) 'V f(z))}
= o= (VIL(z, Aoy ) + Q) N (VaL(z, Ans§) + B()) (57)
where
R(z) = ViL(z,\,p)+Q(z)
Q(z) V2e(z,U(z)) — VZU(z,\.) + Ch(z)V2h(z) — ph(z)V>h(z)
A(z) = (Vh(z)"R(z)"'Vh(z))™
Bz) = Vh@){A@)(h(z)— Vh()TR(2) V() - A — ph(z)}.

i

Hence, the iterative procedure (57) has been written as a perturbation of
the ideal Newton method given by (56), where the perturbations are given
by @Q(z) and E(z).

Our next result demonstrates that the SQP-Newton method with La-
grange multiplier estimate given by formula (10) satisfies conditions (i) and
(ii) of the previous lemma, whenever the approximation formula U in the
Lagrange multiplier (10) satisfies a mild condition.

Lemma 7.2 Let z, be a local solution of problem (1) with associated mulli-
plier .. Assume that in a neighborhood of the solution z.

1U(z) = Al = O(llz = z.]))- (58)

Also assume the standard conditions (A1)-(A83) and the boundedness condi-
tion (A4). Then there ezists a neighborhood N(z.), of the local solution .,
such that for all z € N(z.)

(@) Q@) = O(ll= — =),
(b) 1E@)|l = O(ll= — =.]*).
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Proof.  From the boundedness condition (A4), the standard assumption
(A1) and the condition (58) it follows that there exists a neighborhood of
the solution z., such that for all z in that neighborhood

1R < IV, U(z)) — Vit(z, M)l + llclllla(z) = Az )IVA(2)]
+lallIA(2) — R(=)IVZA()]
= O(llz — =) (59)
Therefore condition (a) holds. For the sake of simplicity we will denote the
it* component of the gradient vector of k, evaluated at z, (Vh;(z)) by Vh;.

Similar notation will be used for similar quantities. Using this notation we
have

A{h—=VRTR'Vf} - A\ = ph =
= A{P(h - h(z,)) = VATR™Y(Vf + Vh\)
+ VATRY(Vf(z.) + VA(z.)A)}

= a{p[ VAT (2. + t(z — 2.))(z — o.)dt

- ViR | V2 (o + t(z ~ 22))(z — 22)dt

—ViTR™ i /01 V2hi(z. + t(z — 2.))(z — a:*)()\.);dt}

i=1
where
P =Ipnym— pA~.
Adding and subtracting some terms conveniently we obtain

A{h—=VRTR'Vf} — A\ — phi =
A {P / " A(t)(z — z.)dt — VATR™ / " A%()(z — z.)dt

—VKTR™? f: /0 ' A (M)i(z - z.)dt}

=1

+AZ(z — z.) (60)
where
Alt) = (Vh(z. +t(z —z.)) — Vh(z.)),
A¥t) = Vif(ze + t(z — z.)) — sz(:z;,..),

Adt) = Vihi(z. +t(z — 1.)) — V?hi(z.), and
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Z = PVh(z,)T = VRTR'V?f(z,) — VATR' Y Vhi(z.)(A)i.  (61)
=1
By assumption (A1) and the fact that 0 < ¢t < 1 we have that in a neighbor-
hood of the solution z.

AN = Oz - =),
1A &N = O(liz - =.l),
4@ = Ol — =) (62)

On the other hand, adding and subtracting terms to (61) we have

Z = VKRIR{(V%f — Vf(x.)) + f:(vzh.- — V2hi(2.)) (M)

=1

+ pVA(Vh — Vh(z)T + f)v%.»(U,- — (A0}

+ (Vh(z.) — VR)T{R'V*f 4+ pR'VAVAT
+ R E Vzh.'U,'} + Vh(:t.)TR—l EC,‘Vzhi(h" - h.(.’l?,.,)) (63)

=1 i=1
By assumptions (A1)-(A4) and condition (58) we have that in a neighborhood
of the solution .

121l = O(llz — =) (64)
From (60), (62) and (64) it follows that there exists a neighborhood of the

solution z. such that
NE(@)]l < |VAIIA{h - VRTRT'Vf} — )\ — phl|
O(llz — x.|*). =

Theorem 7.1 Let z. be a local solution of problem (1) with associated La-
grange multiplier \,. Assume the standard conditions (A1)-(A3) and the
boundedness condition (A4). Also assume that in a neighborhood of the so-
lution z.

1U(=z) = Al = O(llz — 2.[))- (65)

Then the SQP-Newton method with the choice of Lagrange multiplier given
by (10) is locally and q-quadratically convergent to ..
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Proof. It is not difficult to prove and well known that the standard
assumptions (A1)-(A3) imply the standard assumptions (S1)-(S3) for the
nonlinear system of equations (55). On the other hand, by Lemma 7.2 con-
ditions (ii) and (iii) of Lemma 7.1 are satisfied. Therefore, we have the
assumptions of Lemma 7.1 and thus the iterative procedure (57) is locally
and q-quadratically convergent to z.. O

Corollary 7.1 Let z. be a local solution of problem (1) with associated
Lagrange multiplier .. Assume the standard assumptions (A1)-(A3). The
SQP-Newton method with Lagrange multiplier estimate given by (10), where
the approzimation formula U is the least-squares formula

U(e) = —(Vh(z)"Vh(2)) ' Vh(z) V f(2), (66)
or the Miele-Cragg-Levy formula
U(z) = (Vh(z)"Vh(z)) "} (h(z) — Vhi(z)"V (2)), (67)

with the penalty parameter ¢ chosen accordingly to Algorithm 6.1 or Algo-
rithm 6.2, is locally and g-quadratically convergent to ..

Proof. The penalty vectors c obtained by Algorithm 6.1 or Algorithm 6.2
satisfy the boundedness condition (A4). It is straightforward to prove that
under the standard assumptions (A1)-(A3), there exists a neighborhood of
the local solution z, such that

[U(z) = Al = O(llz — z.]1), (68)
where the approximation formula U is given by formula (66) or by formula
(67). ]

A rather direct extension of these results shows that the SQP-Newton
method with Lagrange multiplier formula given by (10), where formula U
is given by the QP multiplier formula (the multiplier associated with the
solution of subproblem (5) ) is locally and q-quadratically convergent in the
pair (z,A); but not necessarily in z alone.

8 Numerical Results

In this section we discuss some issues concerning the implementation of the
SQP-Newton method and present numerical results obtained from our im-

25



plementation of the method.
The SQP-Newton method that we implemented to test our multiplier
estimate is

Tr41 = T + Az (69)

where Az, is the solution of the linear system

( Vil(zi, U(zi) + %:((;:))T) Vh(():ck) ) ( 2; ) _ ( —V,Z_(Z:E;S(zk)) ) .

The penalty vector C; = diag(cx) is computed using Algorithm 6.1 or
Algorithm 6.2. We also imposed the condition

llellz < M, (71)

for some positive constant M. We proceed in the following way: whenever
¢ satisfies (71), it is acceptable. Otherwise, we set ¢; = 0 , and perform the
modified Cholesky factorization, given in Dennis and Schnabel [2], on the
matrix H(0) to obtain pg.

The problems tested were taken from Hock and Schittkowski [5] and will
be referenced by the number given there. The SQP-Newton method with
the choice of the multiplier (10) was implemented in Matlab 4.0 on a Sparc
station 1. The choices for U in formula (10) are:

Urs(z) = —(Vh(z)TVh(z))'Vh(z)TVf(z) (72)
Umcr(z) = (Vh(z)"Vh(z))™'(h(z) — Vh(z)"V f(2)) (73)
Ugp(z,)) = (Vh(z)"HVh(z))™}(h(z) - Vh(z)"HV f(z))  (74)

where the matrix H = V2{(z, \)™L.
In order to study the robustness of the Lagrange multiplier choice (10)
in the SQP-Newton framework we tested each problem starting from various

initial points zo. Moreover, in order to make uniform comparisons, in all the
experiments we use the same initial Lagrange multiplier

/\2 = ULs(xo). (75)

The numerical results are reported in Tables 1 through 9. The numbers
in the column labeled PN give the number of the problem being tested.

26



The numbers in the column labeled NIP give the number of starting points
tested for each particular problem. We choose the initial iterate that ap-
pears in Hock and Schittkowski [5] and several other initial iterates that
were presented in Williamson [13]. The numbers in the column under the la-
bel Mzx) = U(zi) + Cxh(zk), give the number of different starting points for
which the algorithm converged. For example, in the column labeled ¢ = ¢,
p =0, p =500 and Seq. appears the number of starting points for which
the SQP-Newton method, given by (69) with p = 0 and p = 500 in Algo-
rithm 6.2, the sequential version of Algorithm 4.5, converged. In this case
p = 0 means that we did not add any diagonal matrix to the matrix H(0)
even when the matrix H(cx) was not positive definite. Moreover, p = pi
means that we added to the diagonal of H(0) the matrix px]. The numbers
in the column labeled £ give the number of iterations required to achieve
convergence over the number of times a nonzero for p was computed.
In Tables 1, 2 and 3 the stopping criteria employed was either

1(Vab(zr, Uzw)), (zi)ll2 < 1077,

or the number of iterations reached 250. In these tables the results presented
were obtained allowing the reduced Hessian matrix H(cx) to be indefinite.
This means that when the reduced Hessian matrix H(cx) is not positive
definite and problem (5) may therefore not have a solution, we obtain the
iterate instead by solving the extended system (70). In Tables 4, 5 and 6 we
did not allow the reduced Hessian matrix H(c) to be indefinite. Therefore,
we not only used the previous stopping criteria, we also consider that the
algorithm failed if the reduced Hessian matrix H(ck) given in (42) had an
eigenvalue less than 106, In Tables 7, 8 and 9 we did not allow the reduced
Hessian matrix H(ck) to be indefinite. However, in this case, the stopping
criteria was the same as in Tables 1, 2 and 3. For these tables, we followed
Algorithm 6.1 or Algorithm 6.2, i.e., we added pil to the reduced Hessian
matrix H(0) when H(ck) was not positive definite.

We observe from Tables 1, 2, 3, 4, 5 and 6 that we can achieve convergence
to a minimizer z,, in many problems from different starting points, just by
computing the penalty vector ¢; proposed in this work. Also Tables 4, 5 and
6 indicate that this new choice of the multiplier generates a positive definite
reduced Hessian matrix more frequently than the traditional multiplier for-
mulas (least-squares multiplier (72), Miele-Cragg-Levy multiplier (73) and
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Ak = Ups(zs) + Cih(zy)
PN | NIP | c=0 c=ck c=ck c=ck c=ck
p=0 p=0 p=0 p=0 p=0
p=>500 | 4=500 | u=1000 | x=1000
Parallel Seg. Parallel Segq.
] 9 2 8 8 8 8
7 4 0 4 4 4 4
26 5 2 5 5 5 5
27 7 5 7 7 7 7
60 4 1 4 4 4 4
39 11 0 9 7 9 7
40 12 4 11 7 7 8
42 12 4 9 10 9 10
77 10 7 10 10 10 10
78 12 6 12 10 10 10
79 10 6 7 8 7 8
46 8 7 8 8 7 6
47 11 5 9 10 10 11
56 9 0 0 7 1 7

Table 1: Number of starting points for which the SQP-Newton method con-
verges (indefinite reduced Hessian allowed).

the QP multiplier (74 )). Moreover, from Tables 7, 8 and 9 we observe that
the number of times we compute p; compared with the number of times we
compute p; for the traditional multipliers is smaller. Finally, we can achieve
convergence to a minimizer in almost all the problems from most starting
points.

It is important to mention that the algorithms do not always converge
to the same points. Our numerical experiments seem to indicate that the
region of local convergence is larger with our choice of the multipliers. On
the other hand, our numerical results seems to indicate that Algorithm 6.1
and Algorithm 6.2 are not very sensitive to the choice of the parameter p.

So far, we have considered the local properties of the new choice of mul-
tipliers (10). In the near future we would like to embed this technique in a
globalization strategy; and consider the global properties of this new choice
of the multipliers.
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Xk = Unmcr(zi) + Cxh(zx)
PN | NIP | ¢=0 c=cx c=cx c=ck c=cx
p=0 p=0 p=0 p=0 =0
p=500 | p=500 | p=1000 | 4 =1000
Parallel Seq. Parallel Seg.
6 9 3 8 8 7 7
7 4 3 4 4 4 4
26 5 2 5 5 5 5
27 7 7 7 7 7 7
60 4 1 4 4 4 4
39 11 5 9 9 9 9
40 12 1 9 7 9 6
42 12 7 9 10 9 10
77 10 9 9 9 9 9
78 12 7 8 11 8 10
79 10 7 8 9 8 9
46 8 7 6 6 7 7
47 11 6 11 10 11 7
56 9 0 3 4 2 7

Table 2: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian allowed).

A = Ugp(zi) + Cih(zi)
PN | NIP [ c=0 c=ck c=cg c= ¢k c=ck
p=0 p=0 p=0 p=0 p=0
=500 | u=500 | p=1000 | u = 1000
Parallel Segq. Parallel Segq.
6 9 9 9 9 9 9
7 4 0 4 4 4 4
26 5 2 5 5 5 5
27 7 7 7 7 7 7
60 4 2 4 4 4 4
39 11 10 9 10 10 10
40 12 4 4 6 6 5
42 12 3 9 10 9 10
77 10 7 8 9 8 10
78 12 10 10 10 10 10
79 10 7 8 8 8 7
46 8 7 6 7 6 7
47 11 6 11 11 10 10
56 ] 0 3 8 3 8

Table 3: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian allowed).
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A = Urs(zi) + Cixh(zx)
PN | NIP | c=0 C= Cs C=Cs c=cs c=Cs
p=0 p=0 p=0 p=0 =0
#=0500 | u=1000 | 4 =500 | x=1000
Parallel | Parallel Seq. Seq.
6 9 2 7 7 7 7
7 4 1] 4 4 4 4
26 5 2 4 4 4 4
27 7 1 7 7 7 7
60 4 1 4 4 4 4
39 11 ()] 5 6 8 7
40 12 2 3 2 3 2
42 12 3 10 10 10 10
7 10 4 4 4 3 3
78 12 6 7 7 7 7
79 10 5 5 5 5 6
46 8 0 1 1 0 0
47 11 2 10 8 2 4
56 9 0 0 0 0 0

Table 4: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian not allowed).

Ak = Umcr(zx) + Crhlzi)
PN | NIP | c=0 C= Ca c=cs C=Cs c=cCa
p=0 p=0 p=0 p=0 p=0
pu=2500 | p=1000 | p =500 | p=1000
Parallel | Parallel Seq. Seq.
6 9 3 7 6 7 6
7 4 1] 4 4 4 4
26 5 2 4 0 4 0
27 7 5 7 7 7 7
60 4 1 4 4 4 4
39 11 3 6 6 7 6
40 12 3 2 2 2 3
42 12 3 9 9 10 10
77 10 4 3 3 3 2
78 12 6 7 7 7 7
79 10 5 4 4 5 5
46 8 0 1] 0 (1] 0
47 11 2 4 4 5 4
56 9 0 0 0 0 0

Table 5: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian not allowed).
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Ak = Ugp(2k, M) + Crh(zi)
PN | NIP | c=0 C= Ce C=Cs C=Cs c=Cs
p=0 p=0 p=0 p=0 p=0
p=500 | 4 =1000 | 4 =500 | u=1000

Parallel | Parallel Seq. Seq.
6 9 6 8 8 8 8
7 4 0 4 4 4 4
26 5 2 5 4 5 4
27 4 1 5 5 5 5
60 4 1 4 4 4 4
39 11 0 6 6 6 6
40 12 0 1 1 1 1
42 12 4 9 9 10 10
77 10 3 3 3 3 3
78 12 4 5 5 4 4
79 10 4 4 4 5 5
46 8 0 0 0 0 0
47 11 2 5 5 5 5
56 9 0 0 0 0 0

Table 6: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian not allowed).
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A = ULs(zk) + Ckh(xk)
c=0 ] c=cg ) c=Ck ' c=Cgk . ¢ =Ck ]
PN{NIP |p=p L p=p 2| p=pp % |[p=p 5| r=n g
p =500 p = 1000 p =500 p = 1000
Parallel Parallel Seq. Seq.

6 | 9 3 9 22 9 a 9 82 9 g

7 4 0 2 4 53 4 53 4 53 4 53
26| 5 2 B 5 i 5 i 5 e 5 g
271 | 7 7T B 7 e 7 L 7 e 7 s
60 4 4 8 4 s2 4 &2 4 g2 4 2
39 [ 11 6 52 9 a 9 w10 9 w
40 | 12 9 i 9 M 9 u 9 w 6 %
42 | 12 VI 12 s | 12 YT 12 1—;1
77 | 10 9 9 E 9 s 9 = 9 0

4
78 | 12 8 80 10 e 9 g8 8 2 9 8
79 | 10 10 i 10 2 10 us 10 e 10 e
46 8 8 =8 8 a8 8 2 8 0 8 o
47 | 11 1 48 11 2L 11 e 11 s 11 b
8 35 7
56 9 1 8 2 g 2 H 1 s 0 s

Table 7: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian not allowed).
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LY -4

At = Unmci(ze) + Crh(zi)
c=0 c=cCk c=ck c=cCk c=Ck
PN|NIP |p=p % |p=p 2| p=px L |p=p L | p=p
p =500 s = 1000 =500 1= 1000
Parallel Parallel Seq. Seq.
9 9 9 2 9 B 9 5 9
4 4 8 4 52 4 82 4 82 4
26 | 5 5 4 5 ur 5 & 5 1 5
27 | 4 (O 7 iz 7 i 7 1z 7
60 | 4 4 52 4 & 4 & 4 &3 4
3% | 1 8 32 10 3 9 i 10 22 9
40 | 12 9 iz 5 L 6 g 7 108 7
42 | 12 12 i 12 12 12 128 12 LB 12
77| 10 9 48 9 8 8 & 8 2 9
78 | 12 8 B 10 g 10 & 9 s 9
79 | 10 10 iz 100 42 10 21 10 10
46 | 8 g 8 a 8 s 7 gz 8
47 | 11 1 11 a1 11 2 11 22 11
5 | 9 6 g 9 i 6 = 1 $ 0

e
=]
Y

-
- It b
ng’, °Iw wl
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o
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E ol ol

gie 25 v -2 %

o @
=1

—

1 o~
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Sle B 3D

Table 8: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian not allowed).
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A = Ugp(zk, Ar) + Ceh(zi)
c=10 ] c=C ) C=Ck ] c=Ck ] c=c }
PN|NIP|p=p % |p=p % | p=ox L |p=mr J | P=n u
p =500 4 = 1000 p =500 4 = 1000
Parallel Parallel Seq. Seq.

6 9 9 i 9 x 9 1% 9 282 9 189
7 4 4 & 4 52 4 52 4 52 4 52
8 191

26 | 5 5 X 5 3 5 2 5 8 5 181
139

27 | 4 6 & 6 13 6 2 6 1 6 12
60 | 4 4 g 4 59 4 59 4 89 4 8
219 258 244 170 167

39 | 1 10 22| 10 % 10 e 9 n 9 o
145 144 121 146 80

40 | 12 9 9 g 9 2z 9 i 6 2
89 9 115 184 184
42 | 12 9 12 9 2 7 e 6 L 8 &
7 | 10 8§ 322 8 304 8 as 9 e 9 &3
78 | 12 9 il 10 B 10 81 11 87 11 8
145 30 53 123 118
79 | 10 10 ]| 10 2 10 1 10 A2 10 s
46 | 8 8 8 8 8 e 8 s 8 i
a7 | 11 n Wi o 2 11 ) 11 e
5 | 9 0 2 2 i 4 e 3 L 0 2

Table 9: Number of starting points for which the SQP-Newton method con-
verges, (indefinite reduced Hessian not allowed).
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